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A numerical experiment on the interaction between different decaying homogeneous
and isotropic turbulence is described. In the absence of kinetic energy production, the
intermediate asymptotics of the turbulent shear-free mixing layer can be observed.
The first aim of the experiment is to verify the existence of the intermittency or
of the Gaussian asymptotic state in the case of the absence, or weak presence,
of a lengthscale gradient. The second aim is to analyse the effects that are due
to the difference between the spectral distribution of the interacting turbulence
fields, which introduces the presence of the gradient of integral scale into the initial
condition.

It can be observed that the homogeneity of the integral length across the shearless
layer is not a sufficient condition to obtain the Gaussian asymptotic state. In fact,
if the macroscale gradient is suppressed by considering turbulence with similar
spectra, it is apparent that the intermittency increases with the energy gradient.
Furthermore, by independently varying the initial energy level and distribution over
the wavenumbers, two turbulence fields can be joined with an initial difference of
integral scale either opposite to or concordant with the gradient of the turbulent
kinetic energy. It is found that the intermittency and the depth of penetration by the
eddies from the high-energy region increase when the energy and lengthscale gradients
are concordant and decrease when they are opposite. Therefore, the most efficient
process of mixing takes place when the spectra of two mixed fields differ in the lowest
wavenumbers.

1. Introduction
The interaction of turbulence with different macroscales is common in nature and

in engineering practice. In this context, shearless mixing is fundamental: this is the
simplest inhomogeneous turbulent flow because it is free of turbulence production
due to the presence of a mean shear. The macroscale gradient across the mixing
layer is associated with the initial condition and the related spectral properties and is
not necessarily oriented according to the energy gradient, as it can be concurrent or
opposite to it.

A number of studies of the shearless mixing layer have been carried out to
understand the interaction of two dominant energy-containing scales, see e.g. Gilbert
(1980), Veeravalli & Warhaft (1989), Briggs et al. (1996), Knaepen, Debliquy, &
Carati (2004). Veeravalli & Warhaft (in the following referred to as V&W) studied
a turbulence mixing layer formed of decaying passive grid turbulences in which
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two distinct scales interact. In this experiment, different kinds of grids and different
lengthscale ratios were tested and the larger scale always belonged to the higher
kinetic energy side of the stream. In all the tested cases, the mixing layer was very
intermittent and the velocity statistics non-Gaussian. As a consequence, flow spreading
was affected by both turbulent diffusion and intermittent turbulent penetration. The
dependence on the initial conditions did not prevent self-similarity of the velocity
statistical distributions from being reached with downstream distance. These results
were in part different from Gilbert’s (1980) observations, who did not find large-scale
intermittency in his mixing layer. According to V&W, Gilbert’s failure to observe
intermittency was probably due to his experimental configuration, in which the energy
ratio was equal to 1.48 and the mesh ratio was only 2, giving a lengthscale ratio of
1.4, which was considered too low a ratio to show a two-scale interaction process.
In this interpretation, the mixing observed by Gilbert is an asymptotic state, where
a transport process that is essentially controlled by a single scale, takes place: this
results in a variance profile fitted by an error function, no intermittency, and thus
global Gaussian behaviour (called turbulent diffusion).

The mixing layer simulation by Briggs et al. (1996) offers more information. This
experiment has an initial energy ratio of about 7.5 and is intially a one-scale decaying
mixing, since the initial condition presented an energy gradient that was produced by
multiplying each spectral component in an initial homogeneous and isotropic velocity
field by a factor which was only a function of the coordinate along the inhomogeneity
direction x. This operation produces a profile of kinetic energy along x, but leaves the
macroscale of the two initial turbulence fields thus built unaltered, according to the
authors’ integral scale definition (cf. Briggs et al. p. 218, formulae (2.9) and (2.10)).
After a temporal evolution of 1.72 time units, and taking the Reynolds number effect
into consideration, the unforced Briggs et al. simulation yields turbulence mixing
with a macroscale ratio of nearly 0.93, a value that is closer to 1 than Gilbert’s
lengthscale ratio. It should be pointed out here that the Briggs et al. experimental
simulation showed skewness and kurtosis distributions that were far from Gaussian,
with intermittency data of the order of those of the 3:1 perforated plate experiment
by V&W. This result is contrary to the existence of an asymptotic state when the
macroscale gradient across the layer is weak (i.e. the lengthscale ratio is nearly
one). In our opinion, the explanation of these findings lies in the very low energy
gradient of Gilbert’s mixing layer (1.48 as the energy ratio, against the value of 7.5
in the Briggs et al. experiment). In such a situation, it was very difficult for Gilbert
to show the weak eventual removing of the velocity statistics from the Gaussian
behaviour.

In this paper, we seek to verify this Gaussian asymptotic state by means of both
direct and large-eddy numerical simulations (DNS and LES) where the gradient of
kinetic energy is varied and the integral scale gradient is zero. In this case, a first kind
of mixing, called type A, is obtained, which exchanges energy between turbulence with
the same integral scale. We also carried out a numerical experimental analysis of the
effects associated with a more general initial condition on the intermediate asymptotics
(see Barenblatt 1996) of the turbulence mixing. In fact, the difference between the
distributions of the kinetic energy on the wavenumbers of the two turbulence fields
brings into play the presence of an integral scale gradient. By independently varying
the intensity and the sign of the initial energy and integral scale gradients across the
layer, a second and a third type of mixing are obtained, which exchange energy with
an initial difference of integral scale either opposite to (type B) or concurrent with
(type C) the gradient of the turbulent kinetic energy.
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In this study, the adopted definition of the integral scale � permits a direct
measurement to be made and does not rely on the actual form of the link between
the kinetic energy, the integral scale, the dissipation rate and the Reynolds number,
which is far from being accurately known (see Batchelor 1953; Sreenivasan 1998;
Kaneda et al. 2003). Details concerning the statistical definitions, filtering techniques
and numerical simulations are given in § 2. Section 3 contains a description of the
results obtained using the DNS and LES of the three kinds of mixing layer. The main
findings are summarized in the conclusions (§ 4).

2. Determination of turbulence macroscales, filtering and numerical details
of the simulations

The definition of a longitudinal integral scale that permits a direct measurement is

�(t) =
1

3

∑
i

∫ ∞

0

Rii(r, t) dr

Rii(0, t)
, (2.1)

where Rii is the longitudinal velocity correlation (see e.g. Batchelor 1953, p. 105). Since
� is a quantity normalized by the kinetic energy, the integral scale does not depend on
the level of the kinetic energy, but on the way it is distributed over the wavenumbers
(in particular over the small wavenumbers which are not universal in behaviour since
they depend on the geometry of the boundaries). It is thus possible, depending on
the initial/boundary conditions, that a flow region which is rich in kinetic energy
has a lower macroscale than an adjacent region which is poorer in energy. It is also
evident that turbulence with a similar spectrum has equal macroscale, regardless of
the energy content. It is therefore possible to have initial conditions where a zero
macroscale gradient is associated with the presence of an energy gradient.

In literature dealing with shearless mixing, authors often use approximations of the
integral length deduced from the hypothesis of statistical equilibrium, i.e.

� =
E3/2

ε
, (2.2)

where dE/dt =− ε. However, in the Briggs et al. (1996) and Knaepen et al. (2004)
DNS simulations, in the laboratory experiments by V&W, as well as in the present
DNS simulations, this hypothesis is not fully satisfied, since the Taylor-microscale
Reynolds numbers (Reλ) are less than 70, see Batchelor (1953), Dimotakis (2000).
Relation (2.2) should be applied with caution whenever the Re value does not allow
the divergence of scales to be obtained that the universal equilibrium theory requires.
At low Reynolds numbers, (2.2) should be replaced by

�ε

E3/2
= f (Re). (2.3)

Function f is of order 1, but is not yet completely known. Simulations of
homogeneous and isotropic turbulence in a periodic box and the laboratory, see
Batchelor (1953), Sreenivasan (1998), Kaneda et al. (2003), show that, in the low Re
range, its value almost halves when Re quadruples. As a consequence, and recalling
that during decay Reλ remains constant (Speziale 1992), an integral length ratio
estimated with relation (2.2) can be affected by a large error. In the following, we
use definition (2.1), which is equivalent to (2.3). We have also listed the integral scale
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E =
E1

E2

∇∗(E/E1) L =
�1

�2

∇∗(�/�1) Reλ1
n1 n2

xs − xc

∆

xk − xc

∆

DNS: A 6.7 0.425 1.0 (1.6) 0.0 45.4 1.22 1.16 0.42 0.62
B 6.6 0.424 0.6 (0.5) −0.33 45.4 1.22 1.32 0.36 0.45
C1-s 6.6 0.424 1.5 (1.7) 0.17 45.4 1.22 1.39 0.63 0.84
C1-c 6.5 0.423 1.5 (1.8) 0.17 45.4 1.22 1.37 0.63 0.84
C2 6.5 0.423 2.1 (2.7) 0.26 45.4 1.22 1.56 0.79 0.98

LES: a1 1.43 0.149 1.0 0.0 45 1.25 1.16 0.17 0.30
a2 6.7 0.421 1.0 0.0 45 1.25 1.15 0.54 0.75
a3 12.1 0.454 1.0 0.0 45 1.23 1.15 0.65 0.86

12.1 0.454 1.0 0.0 450 1.20 1.14 0.72 0.93
a4 24.0 0.474 1.0 0.0 45 1.22 1.13 0.82 0.99

24.0 0.474 1.0 0.0 450 1.20 1.13 0.86 1.06
a5 58.1 0.485 1.0 0.0 45 1.22 1.13 1.07 1.23

58.1 0.485 1.0 0.0 450 1.20 1.13 1.19 1.28
b1 24.0 0.474 0.53 −0.44 45 1.24 1.35 0.72 0.86
b2 58.0 0.485 0.38 −0.80 45 1.20 1.11 0.80 0.91

V&W – bars 6.2 (2.4) 78.1 1.22 1.39 0.30 0.30
V&W – plate 6.3 (2.2) 44.5 1.43 1.25 0.63 0.81
Briggs et al. 7.5 1.0(1.7) 40.3 1.55 1.35 0.38 0.51
Knaepen et al. 6.27 (2.2) 69.0 1.30 1.10 0.77 1.06

Table 1. Flow parameters. E = kinetic energy, �= integral scale (equation (2.1)), Reλ = Taylor-
microscale Reynolds number, ∇∗= ∂/∂(x/∆) = gradient normalized with the mixing layer
thickness ∆, n= exponent of the energy decay, xs and xk are the positions of the maxima of
skewness and kurtosis. Index 1 refers to the high-energy region, index 2 to the low-energy region.
In the fourth column, the data in parenthesis refer to scales computed through equation (2.2).

ratio estimated using (2.2) in table 1 for all our simulations to show the size of the
approximation induced by the adoption of the hypothesis of statistical equilibrium.

To produce different turbulence scales, it is possible to filter the available original
turbulent field (Wray 1998) to obtain a new field with a different spectral distribution
of energy. To form the initial condition, the original and the new field are placed
side-by-side in the computational domain using the technique by Briggs et al. (1996),
which matches the turbulence through a rapid transition layer. The low-pass filtering
of the fluctuation field leads to an increase of the integral scale, while the high-pass
filtering leads to a decrease. When two turbulence fields are obtained by multiplying
the same initial velocity field by a constant, the numerical experiment carried out by
mixing these fields is initially an example of turbulence mixing with different energies
but equal integral scales. If the fundamental definition of a longitudinal integral scale
is applied, see (2.1), the ratio of the integral scales of the turbulences will be equal to 1.

In this study, one low-pass and two high-pass filtering methods were adopted. The
low-pass filtering has been obtained through the direct numerical simulation of the
decay of the homogeneous isotropic field used to prepare the initial conditions (Wray
1998). A decayed field has low energy and a larger scale than the initial field. Thus,
the numerical mixing of the decayed and the initial fields permits a shearless layer to
be obtained with opposite energy and integral scale gradients. The following filters
were used to high-pass filter the turbulence fluctuations:

gs(k) =
1

1 − e−a(|k|−|k0|) , (2.4)
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gc(k) =
∏

i

φ(ki), φ(ki) =
1

1 − e−a(ki−k0)
. (2.5)

Function gs is a spherical kind of filter. Function gc filters any wavenumber that
has at least one component lower than the filter scale, k0, and thus suppresses the
filamented and layered structures from the turbulence. This second kind of filter,
which can be called cross-filtering, is more efficient in lowering the integral scale of
the turbulence than the spherical one and is thus used to produce the mixing with
the highest lengthscale ratio. The same mixing was produced using both the spherical
and the cross-filters to check for the existence of initial condition effects that can be
attributed to the filtering used and non-exclusively to the global statistical properties
of the initial condition. The statistics in the self-similar part of the decay were then
compared, but no significant difference was observed (see § 3, and figure 1b). It should
be noted that after the filtering and before the initialization of the field, the turbulence
was always time evolved to obtain a Navier–Stokes field.

The initial condition can be prepared in an alternative manner. Knaepen et al.
(2004) initialized the flow by using Fourier modes associated with the velocity field,
fixing their amplitude to match a given spectrum and assigning them random phases.
The procedure starts from the initialization of three-dimensional modes, that are then
transformed into two-dimensional Fourier modes, rescaled on the prescribed two-
dimensional spectra in each plane perpendicular to the direction of inhomogeneity,
and then transformed back into three-dimensional modes. The procedure also includes
iterations with projection onto divergence-free fields to satisfy continuity, and time
evolving the flow to obtain a Navier–Stokes solution from the random phases.
However, procedures based on the random-noise turbulence generation methods
are generally rather slow in establishing realistic turbulence compared to recycling
methods based on the use of data from a separate calculation (see e.g. Keating
et al. 2004). For this reason, to reduce the turbulence integral scale, we preferred
to use the simpler method based on the high-pass filtering of an original Navier–
Stokes solution followed by a development run which exploits a temporal evolution
(lasting approximately one eddy turnover time) to restore the properties relevant to
the Navier–Stokes fields.

The direct numerical simulations presented here were carried out by means of a
new technique for the parallel dealised pseudospectral integration of the Navier–
Stokes equations (Iovieno, Cavazzoni, & Tordella 2001). The boundary conditions are
periodic in all directions. Two computational domains, a (2π)3 cube with 1283 points,
and a 4π(2π)2 parallelepiped with 256 × 1282 points, were used to obtain an estimate
of the numerical accuracy. In the initial condition, the two velocity fields are matched
by means of a hyperbolic tangent function, which has width 1/20 of the domain (but
1/40 for the larger domain):

u(x) = u1(x)p(x) + (1 − p(x))u2(x),

p(x) =
1

2

[
1 + tanh

(
a

x

L

)
tanh

(
a
x − L/2

L

)
tanh

(
a
x − L

L

)]
,

where x is the inhomogeneous direction, L is the width of the computational domain
and constant a = 12π, see figure 1(a). This technique of generation of the transition
layer is analogous to that used in Briggs et al. (1996) and Knaepen et al. (2004).
The time integration is carried out by means of a four-stage fourth-order explicit
Runge–Kutta scheme. The same numerical technique was used to implement the
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Figure 1. (a) Normalized kinetic energy: xc is the mixing layer centre and ∆ is the mixing
layer thickness. (b) Initial three-dimensional energy spectra. Continuous line: high-energy
region for all the mixing types; other lines: low-energy region for mixing A, B, C1-c, C1-s and
C2.

large-eddy simulations, which were carried out using the Intrinsic Angular Momentum
(IAM) subgrid-scale model (Iovieno & Tordella 2002). This model is based on the
proportionality of the turbulent diffusivity to the intrinsic moment of momentum
of the finite element of a fluid. The IAM correctly scales the eddy diffusivity νδ ,
with respect to both the filtering length and the dissipation rate, and introduces
a differential equation – the intrinsic angular momentum equation – to follow the
evolution of νδ . This is particularly advantageous in the case of non-equilibrium
turbulence fields, since it adds a degree of freedom to the subgrid modelling.

This section is concluded with information on accuracy estimates deduced
a posteriori. The source of all the turbulence fields used was the direct numerical
simulation of homogeneous and isotropic turbulence by Wray (1998). The raw data
by Wray presented an inhomogeneity level for the kinetic energy of about ±8% and
skewness and kurtosis values slightly different from those of the statistical equilibrium
(respectively 0.02 ± 0.2 instead of 0 and 2.8 ± 0.3 instead of 3). For our set of direct
numerical simulations, the widening of the computational domain from 2π to 4π
(from 128 to 256 grid points) along the inhomogeneous direction, gave estimates of
the relative accuracy of about 5 % for the maximum values of the distributions of
the skewness, and of about 12 % for the kurtosis distributions, and it increased the
signal-to-noise ratio from 4.5 to 7 for the skewness computation, and from 4 to 5 for
the kurtosis computation. The large-eddy simulations were performed over 643 grid
points. It has been verified, by means of tests with an enhanced spatial discretization
(323, 483 and 643 grid points), that, for the observed temporal evolution, the two
equilibrium turbulence fields outside the mixing region have a non-homogeneity of
about ±5 %. For the skewness and kurtosis distributions, the signal-to-noise ratio is
lower than that of the DNS, and it is equal to about 4 and 3, respectively.

3. Simulation results and discussion
The initial conditions place a kinetic energy and an integral scale gradient in the

direction of inhomogeneity (here denoted x). The gradients result from the different
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levels of kinetic energy of the two interacting turbulence fields, each of which can be
characterized by a different macroscale. In the following the indexes 1 and 2 indicate
the high- and the low-energy fields, respectively, see figure 1(a). The parameters that
are actually controlled in the experiment are the ratio of energy, E =E1/E2, which
is taken to be greater than 1 in all the simulations, and the ratio of integral scales,
L = �1/�2, which can be either greater than 1 (concurrent energy and scale gradients),
equal to 1 (zero scale gradient) or lower than 1 (opposite gradients). The centre xc of
the mixing layer is the position where E = (E1 + E2)/2.

The flow parameters of the present simulations are documented in table 1, together
with the parameters of the experiments by V&W and the simulations by Briggs et al.
(1996) and Knaepen et al. (2004). The values of the normalized gradients relevant
to the imposed energy and scale ratios are also given in table 1. In the gradients,
the energy and integral scale are normalized by the values of the high energy field,
while the spatial coordinate is normalized by the length ∆(t). Function ∆ is defined
by mapping the low-energy side of the mixing layer to zero and the high-energy side
to one, and it is equal to the distance between the points with energy values 0.25
and 0.75, as in the paper by V&W. It should be noticed that by doing so, the energy
gradient value has the upper limit of 0.5, which is reached in the limit for E2 going
to zero, i.e. when E2/E1 → 0 (E → ∞).

Outside the mixing region, the kinetic energy in the two turbulence fields decays as

E = A(t + t0)
−n (3.1)

(Batchelor 1953). Here, t and t0 are the non-dimensional time and decay constants
of integration, respectively, which are normalized by the field eddy turnover time
τ=�/E1/2. Constant A is equal to E(0)tn

0 . The dissipation rate is ε =−dE/dt . Relation
(2.3) yields the following the temporal variation for the macroscale:

�=
1

n
f (Reλ)

√
A (t + t0)

1−n/2. (3.2)

As a consequence, since the values of the exponents n1, n2 and of the constants t01, t02
are close to each other, see table 1, functions

L(t)

L(0)
=

(
1 +

t

t01

)1−n1/2(
1 +

t

t02

)−1+n2/2

, (3.3)

E(t)

E(0)
=

(
1 +

t

t02

)n2(
1 +

t

t01

)−n1

(3.4)

slowly vary in time. This permits the mixing evolution to take place under nearly
constant conditions.

Independently of the values of the control parameters and the concurrency, or lack
of it, of the energy and scale gradients, a set of common properties exists for all the
studied mixing. First, the statistical distributions become self-similar after a decay of
nearly three time units. Second, in the self-similarity region of the decay, the lateral
spreading rate is on average close to 0.15. Third, the kinetic energy distribution has a
common shape, as can be seen in figure 1(a). Fourth, all the mixing layers – including
the mixing with L =1, case A – are very intermittent, as the skewness S and kurtosis
K distributions show, see figures 2–5.

The experiment by Gilbert (1980), where L = 1.4 and E = 1.48 and the turbulent
transport was observed to be diffusive, could be interpreted as a one-scale mixing
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Figure 2. Skewness (a) and kurtosis (b) of the velocity component in the inhomogeneous
direction x for case A (E = 6.7, L = 1.0): xc is the mixing layer centre, ∆ the mixing layer
thickness and τ1 = �(0)/E1(0)1/2. Data from Briggs et al. (1996) and Iovieno & Tordella (2002)
are also shown.

layer, i.e. nominally mixing with L = 1. Then, the Gaussianity of the transport could
be hypothesized as a feature of the asymptotic state of the shearless mixing, which is
the state that is supposedly encountered when the lengthscale ratio is close to one and
the production of kinetic energy due to the mean flow and fluctuation interaction is
absent. In this situation, the mixing is viewed as a region of large variance diffusing
into a region of lower variance. We have studied this problem by carrying out a series
of numerical simulations with L = 1 and an increasing value of E, that are here
called experiments of kind A. Numerically, mixing A can be produced by letting two
turbulence fields with different energies but a similar spectrum shape interact, see
figure 1(b) and the preceding paragraph. In the DNS for A, mixing with L = 1 is
coupled to an energy gradient ∇∗E = −0.42 (E = 6.7, that is, the energy ratio studied
by V&W). A large intermittency has been observed in this simulation, see figure 2.

It should be recalled that the numerical experiment on unforced mixing by Briggs
et al. (1996) is also of this kind (see § 1 above and § 2.1, formula 2.2 Briggs, et al.). In
fact, their lengthscale ratio remained very close to one, as is possible to verify after
having deduced the value of constant t01 = 0.5 from the decay of their high-energy
homogeneous region (cf. figure 3, Briggs et al.), and of constant t02 = 0.68 (from
table 1, Briggs et al. and from (3.1), (3.2)). The constant t02 has been also deduced
by noting that, due to the technique used, in the initial condition the high- and the
low-energy regions have similar spectra at t = 0, and thus have the same integral
scale, L(0) = 1 (see also figure 2, Briggs et al.). At t = 1.72 time units, the unforced
Briggs et al. (1996) mixing shows L = 0.93, and skewness and kurtosis maxima of
0.75 and 4.2, respectively. These values are very close to the present simulation, see
figure 2.

The present simulation, A, and the Briggs et al. (1996) results do not confirm the
asymptotic hypothesis. In figure 2, the results from LES obtained using the IAM
subgrid-scale model (Iovieno & Tordella 2002) are also shown. By means of LES,
which allow a reduction of 20 times the computational time, the energy gradient in
experiment A was increased from zero, E = 1, to about 0.5, E = 58, see figure 6(a, b)
below. A regular increase in intermittency characteristics, such as the position of the
maxima in the skewness xs and kurtosis xk distribution, with the energy gradient was
observed. These positions xs and xk represent the penetration of the turbulence mixing,
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Figure 3. (a) Skewness and (b) kurtosis for case B (E = 6.6, L = 0.6). Details as in figure 2.

that is, the planes across which the flow of the second moment of the momentum
fluctuations – the turbulence kinetic energy – and the third moment is maximized.
This increase, in particular the arithmetic mean of xs and xk , if viewed as a function
of E, corresponds to a map with a scaling exponent of about 0.29

ηs + ηk

2
∼ a

(
E1

E2

− 1

)b

, a � 0.36, b � 0.298, (3.5)

where η = (x − xc)/∆, see figure 6(a). If the intermittency increase is viewed as a
function of the normalized energy gradient, observing that approximately ∇∗(E/E1) �
(1 − E−1)/2, the scaling is

ηs + ηk

2
∼ a

(
2∇∗(E/E1)

1 − 2∇∗(E/E1)

)b

, (3.6)

see figure 6(b). This result, as well as the previous ones, have been obtained at the
Reynolds number based on the Taylor microscale of 45, which is the value most often
considered in the shear-free mixing literature. To check for the existence of major
Reynolds number effects, capable of spoiling the quality of the results produced by
these numerical experiments, we have repeated a few LES of kind A at a Reynolds
number ten times larger, i.e. 450. Figure 6(b) below includes these simulations and
shows that the agreement between the simulations carried out at Reλ = 45 and at 450
is good.

To improve and complete the experimental analysis of this mixing process, we
decided to change the value L = 1 by carrying out direct numerical simulations, as
well as LES, with L < 1 (opposite energy and lengthscale gradients), case B, and
with L > 1 (concordant energy and lengthscale gradients), case C.

Case B, documented in figure 3 (a, b) and table 1, has been obtained by matching
a high-energy turbulence and a low-energy turbulence, obtained through the decay
of field 1 over 2.4 time scales. The decayed turbulence has a larger scale, therefore
the energy and integral scale gradients are opposite. In this case, a decrease in the
intermittency can be observed since both the maxima of functions S, K and the lateral
penetration are lowered with respect to case A, see figure 6. It should be noted that,
in figure 6(a), all the mixing of type B falls below the map that describes the mixing
of type A.
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Figure 4. (a) Skewness and (b) kurtosis for case C1 (E = 6.3, L = 1.5). Details as in
figure 2. Symbols: experimental data from V&W (1989), see table 1.
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Figure 5. (a) Skewness and (b) kurtosis for case C2 (E = 6.2, L = 2.1). Details as in figure 2.

Case C is described in figures 4 (mixing C1) and 5 (mixing C2). Simulation C1
reproduces a flow configuration that is similar to the experiments of the 3.3:1 parallel
bars and the 3:1 perforated plate by V&W, two experimental versions of mixing with a
lengthscale ratio close to 2 (but close to 1.5, if the Reynolds number effect is accounted
for, see § 2 and table 1). This configuration is characterized by the concurrency of
the energy and scale gradients. The agreement between our simulation and the V&W
data is good, see figure 4. It can be observed that the intermittency is enhanced with
respect to case A, see also figure 6. The simulation falls somewhere between the two
V&W experiments, though it is closer to the 3.3:1 parallel bar data, which is a good
sign, given that V&W trusted the parallel bar more than the perforated plate data.
It should be noted that we have included data, in figure 4, from two simulations
(C1-s, C1-c) carried out by the high-pass filtering region 2 with filters (2.4) and (2.5).
These two simulations basically yield the same results and this permits us to use the
cross-filter with confidence to increase L to the value 2.1 (table 1, mixing C2 data,
see also figure 5 for this mixing). In this case, the intermittency is further increased,
see figure 7, with respect to experiment A and, as a consequence, also with respect to
experiment B. This confirms that the turbulent transport is more efficient when the
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Figure 6. Positions, xs and xk , of the maxima of the skewness and kurtosis distributions.
(a) As a function of the initial ratio of energy in experiments A,B and C. The grey region
represents equation (3.5) with an uncertainty level of ±0.05. (b) As a function of the initial
gradient of energy in experiment A. The dotted line corresponds to equation (3.6). The dashed
line represents the limit value of the normalized energy gradient.

local integral scale gradient has the same sign as the energy gradient. It should be
noted in figure 6(a) that the mixing with L > 1, including the model computations
by Pope & Haworth (1995), fall above the map that represents the mixing with
L = 1. According to these results, the one-scale shearless turbulence mixing cannot
be considered an asymptotic state. In fact, the transport properties vary continuously
across the zero gradient of the integral scale.
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Figure 7. Position of the maximum of the skewness and kurtosis distributions as a function
of the initial ratio of integral scale: xs and xk are the positions of the maximum of S(x) and
K(x), respectively.

4. Conclusions
The intermediate asymptotics of turbulent mixing layers in the absence of the

production of turbulent kinetic energy has been considered. This requires analysing
the dependence on the initial condition, which here has been documented through
single-point statistics. Three kinds of shearless turbulence mixing were studied, a first
kind with a zero macroscale gradient, and a second and a third kind with opposite and
concordant energy and scale gradients, respectively. In all cases, a self-similar state
appears to exist which is reached after a decay of nearly 3 time units. The statistical
distributions of orders higher than the second maintain features that depend on the
initial values of the kinetic energy, E, and macroscale, L, ratios, and on the sign of
∆L.

If the energy ratio is far from unity, no Gaussian behaviour is observed up to
moments of the order of four for mixing with L ≈ 1. The asymptotic state for the
shearless turbulence, where the velocity variance follows the form of an error function
and the velocity fluctuations are Gaussian, was not observed. On the contrary, the
mixing is very intermittent and the intermittency characteristics vary smoothly when
passing through L = 1. If the lateral penetration is considered in terms of the position
of the maxima of skewness and kurtosis distributions, it is possible to deduce, that,
when L = 1, the intermittency increases with the energy ratio with a scaling exponent
that is approximately equal to 0.29. The relevant map splits the plane {penetration,
E} into two regions: a region where the penetration is lower and where all the mixing
mapped there is observed to have L < 1, which in turn means opposite lengthscale
and energy gradients; and a region where the penetration is higher and where all the
mapped mixing is found to have L > 1, meaning concurrent lengthscale and energy
gradients. This implies that mixing with L = 1 does not represent an asymptotic
state of no, or low, intermittency and that, to obtain mixing that behaves as a region
of large variance diffusing in a region of lower variance, it is also necessary for the
energy ratio to be close to one.

If the energy ratio is kept constant, the maximum values of both the skewness and
the kurtosis increase with the lengthscale ratio. Higher values than when L = 1 are
observed if the energy and scale ratios are concordant, and lower values if opposite.
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From this it is possible to deduce that the sign of the integral scale gradient controls
the turbulence mixing process. When ∇E · ∇� > 1 the flow and variance of the
turbulent kinetic energy are more intense and the transport process is maximized in
planes that are more laterally displaced with respect to the centre of the initial mixing
than when ∇E · ∇l < 1 .
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